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Background

Knowledge Distillation!'! -- Model Compression

- Transfer useful knowledge from Teacher Network(High accuracy, complex) to
Student Network(High accuracy, simple)

- Data Driven KD: Train the Student Network on the same dataset as the
Teacher

- Data Free KD: Student Network has no access to the orginal dataset

Intellectual Property Infringement

- Data Driven KD: Easily stealing the well trained model

- Data Free KD: Restoring potential personal training dataset, threating the
owner’s data privacy and security

[1] Geoffrey Hinton, et al. Distilling the Knowledge in a Neural Network. https://arxiv.org/abs/1503.02531



Related Work

Knowledge Distillation

—> Teacher Model —— Softmax(T=t) — soft labels

Ea Loss Fn —— distillation
loss

soft

Softmax(T=t) — by

predictions n

— Student Model Total loss
hard

predictions

\ A

Softmax(T=1) —

student | |
loss X (¥

. Hard (fix alpha=1)
“softmax temperature” function labely [~

(ground truth)

LossFn ——

exp(zi/T)

J g Z_;‘ exp(2;/T)
MH_‘ ' min Z f""?'fﬂ:ﬁ(ﬂf.—, {P,f.q,r (%:)), 04, “”,fa__? (zi))) + (1 — f"'}-’YE(fTU’,fa_; (i), ¥i)

s

Larger T (Tiy:)EX

Images from: https://nni.readthedocs.io/en/v2.5/TrialExample/KDExample.html



Motivation

How to protect the model?

- Train an Undistillable Teacher Model--Nasty Teacher:
keep the performance when normally using, but deprecate the performance

when distilled into Student Model

Different from Model Watermarking:

- Watermarking: “Afterwards detection”, verifying the ownership via water mark
after stolen

- Nasty Teacher: “Proactive defence”, making the stolen model unavailable



Does “proactive” sound familiar?

Yes! We have cases on images!?l and voices[3l!

- Disrupting Deekfakes - Defending your voice
Input Image _Deepfak.e ,,l/ﬂj)) -~ passz:ve
M— (manipulated image) Aaddly, — detections
— s f'f s Liveness detection,

artifact detection, etc.

Victim’s undefended voice sample  Synthesized speech (realistic)

Input Image Attacked Image

=
[72]
=
c
©
=
(1}

i o
o
c
=
T
c
~
g

#
H

T i A i Proactivel
| ‘ i . Ly
: !4 Deepfake ’ Facial . o DRN mOde/l;s- A A protected
> » : : > » Manipulation * ) Il g : :
Disruption ! St SAtcar AAARMIAL Il Failed to synthesize
A . d L, B 1 )I}l —)

R
S ——

Attacker Sample defended with perturbations Synthesized speech (obviously fake)

[2] Ruiz, N et al. 2020. Disrupting deepfakes: Adversarial attacks against conditional image translation networks and facial manipulation
systems. In ECCV.
[3] Huang et al. 2020. Defending Your Voice: Adversarial Attack on Voice Conversion https://arxiv.org/abs/2005.08781



Methodology

- Propose Self-Undermining Knowledge Distillation

Teacher Nasty Teacher

0,: Pretrained parameters(Fix temperature T)
1 e ) _ B;: Nasty teacher parameters(only ones to be updated)
B Z XE(0(Prog (%)) 1) —wTAKL(Ory (P oy (i), Ora(Pfa, (i), O7a: “softmax temperature” function
(xivi)€EX XE: Cross-Entropy loss
KL: Kullback-Leibler divergence loss



Experiment
Results

CIFAR10 (tp=4, ®=0.004), CIFAR100 (t5=20, @w=0.005) , Tiny-ImageNet (74=20, w=0.01)

Table 1: Experimental results on CIFAR-10.

Table 3: Experimental results on Tiny-ImageNet

Teacher |  Teacher | Students performance after KD
netwerk | performance | "o "ResNetC-20 | ResNetC-32 | ResNet-18
Student baseline | - | 86.64 | 02.28 | 93.04 | 95.13
ResNet-18 (normal) | 9513 | 87.75 (+1.11) | 92.49 (+0.21) | 93.31 (+0.27) | 95.39 (+0.26)

Teacher | Teacher | Students performance after KD

DELAOLE | performance | “gpuffienctv2 | MobilenetV2 | ResNet-18 | Teacher Self

ResNet-18 (nasty) | 94.56 (-0.57) | 82.46(-4.18) | 88.01(-4.27) | 89.69 (-3.35) | 93.41(-1.72)
Table 2: Experimental results on CIFAR-100. ]

Student baseline | = | 55.74 | 51.72 | 58.73 | -

ResNet-18 (normal) | 58.73 | 58.09 (+2.35) | 55.99 (+4.27) | 61.45(+2.72) | 61.45 (+2.72)

Teacher | Teacher | Students performance after KD

ResNet-18 (nasty) | 57.77 (-0.96) | 23.16 (-32.58) | 1.82(-49.90) | 44.73 (-14.00) | 44.73 (-14.00)

BemLk | performance | “gh ificnetv2 | MobilenctV2 | ResNet-18 | Teacher Self

ResNet-50 (normal) | 62.01 | 58.01 (+2.27) | 54.18 (+2.46) | 62.01 (+3.28) | 63.91 (+1.90)

|
Student baseline | - | 71.17 | 69.12 | 77.44 | =
|

ResNet-50 (nasty) | 60.06 (-1.95) | 41.84 (-13.90) | 1.41(-50.31) | 48.24 (-10.49) | 51.27 (-10.74)

ResNet-18 (normal) |  77.44 74.24 (+3.07) | 73.11 (+3.99) | 79.03 (+1.59) | 79.03 (+1.59) ResNeXt-29 (normal) | 62.81 | 57.87 (+2.13) | 54.34 (+2.62) | 62.38 (+3.65) | 64.22 (+1.41)
ResNet-18 (nasty) | 77.42(-0.02) | 64.49 (~6.68)ﬂ 3.45 (-65.67) | 74.81 (-2.63) | 74.81 (-2.63) ResNeXt29 (nasty) | 60.21 (-2.60) | 4273 (-13.01) | 1.09 (-50.63) | 54.53(-4.20) | 59.54(-3.27)
ResNet-50 (normal) | 78.12 | 74.00(+2.83) | 72.81 (+3.69) | 79.65 (+2.21) | 80.02 (+1.96)
ResNet-50 (nasty) | 77.14 (-0.98) | 63.16 (-8.01) |{3.36(-65.76) | 71.94 (-5.50) | 75.03 (-3.09)
ResNeXt-29 (normal) | 81.85 | 74.50 (+3.33) | 72.43 (+3.31) | 80.84 (+3.40) | 83.53 (+1.68)

ResNeXt-29 (nasty) | 80.26(-1.59) | 58.99 (-12.18) || 1.5 (-67.57)

68.52(-8.92) | 75.08 (-6.77)

Deeply deprecated



Experiment
Quantitative Analysis
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The visualization of logit responses after "temperature softmax” function.



Experiment
Ablation Study

Adversarial Network
Table 4: Ablation study w.r.t the architecture of the adversarial network fy , (-) on CIFAR-10.

Teacher |  Teacher | Students after KD
AR | performance T AN ResNetC20 | ResNetC32 | ResNetl8
Student baseline | - | 86.64 | 92.28 | 93.04 | 95.13
ResNetl8(normal) | 95.13 | 87.75 (+1.11) | 92.49 (+0.21) | 93.31 (+0.27) | 95.39 (+0.26)
ResNetl18(ResNetl8) | 94.56 (-0.57) | 82.46 (-4.18) | 88.01 (-4.27) | 89.69 (-3.35) | 93.41(-1.72)
ResNet8(CNN) | 93.82(-1.31) | T7.12 (-9.52) | 88.32 (-3.96) | 90.40 (-2.64) | 94.05 (-1.08)

ResNet18(ResNeXt-29) | 94.55 (-0.58) | 82.75(-3.89) | 88.17(-4.11) | 89.48 (-3.56) | 93.75(-1.38)

Student Network

Table 5: Ablation study w.r.t the architecture of the student networks.

Dataset | CIFAR-10 | CIFAR-100
Student network | ResNet-50 | ResNeXt-29 | ResNet-50 | ResNeXt-29
Student baseline | 04,98 | 95.60 | 78.12 | 81.85

KD from ResNet-18 (normal) | 94.45 (-0.53) | 95.92 (+0.32) | 79.94 (+1.82) | 82.14 (+0.29)
KD from ResNet-18 (nasty) | 93.13 (-1.85) | 92.20(-3.40) | 7428 (-3.84) | 78.88(-2.97)
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Ablation Study
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NASTY TEACHER ON DATA-FREE KD

DAFL Table 6: Data-free KD from nasty teacher on CIFAR-10 and CIFAR-100
dataset CIFAR-10 CIFAR-100

Teacher Network | Teacher Accuracy | DAFL Teacher Accuracy | DAFL

ResNet34 (normal) 95.42 | 92.49 76.97 | 71.06

ResNet34 (nasty) | 94.54(-0.88) | 86.15(-6.34) | 76.12(-0.79) | 65.67 (-5.39)

Deeplnversion

(a) Normal Teacher (b) Nasty Teacher



Some thoughts

- Can we simply add perturbations to the output logits instead of training an
adversarial network?

- Transfer this idea into other areas: image processing; semantic
segmentation



Thank you



